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ABSTRACT: Microglia are the resident monocytic cells in
the central nervous system (CNS), where they constitute the
complex tissue structure together with a diverse set of cell-
types, including neurons, glial cells, and vasculature. Different
from other cells, microglia have distinct features, including not
only their origin but functions in the CNS, and serve multiple
roles within healthy and diseased CNS tissue. The present
review highlights the latest advance in our understanding of
the nature of microglia in the CNS, from their origin to both
the physiological and pathological roles throughout their
whole life.
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■ THE ORIGIN AND DEVELOPMENT OF MICROGLIA

Microglia constitute ∼10% of the total cells in the adult CNS
tissue.1 Although the precise origin of microglia has been
controversial for decades, recent elegant fate-mapping analysis
or studies using specific gene manipulation have identified the
noncommitted c-Kit+ erythro-myeloid progenitors (EMPs) in
extraembryonic yolk sac (YS) as primary progenitors of
microglial cells,2,3 which become YS macrophages during
primitive hematopoiesis stage and migrate to the early
developing brain via the primitive bloodstream3,4 (Figure 1).
These cells invade into the CNS parenchyma, subsequently
giving rise to mature microglial cells. During these developing
processes, acquiring a specific phenotype of microglia depends
on several transcriptions factors such as PU.1 and interferon
regulatory factor-8 (IRF8), which are essential for the transition
from EMP to the A1 state (c-Kitlo YS cells) and the
differentiation from the A1 to A2 state (immature c-Kit−F4/
80hiCX3CR1+ YS macrophages), respectively.5 Besides, runt-
related transcription factor 1 (Runx1) participates in the
ramification process.6 In contrast, microglial development is
independent of the transcription factor Myb,7 which is essential
for the development of circulating monocytes and tissue
macrophages that originate from the fetal liver or bone marrow
(BM).7−9 In addition, signals via colony-stimulating factor 1
receptor (CSF1R) are also essential for their proliferation,
maturation, and function; thus its deficiency results in the
marked reduction in the number of microglia.4,10 However,
interestingly, lack of a ligand CSF1 by itself has no effect on
microglial development, which is alternatively dependent on
interleukin-34 (IL-34),11,12 a second ligand for CSF1R that is
principally produced by neurons.11 Furthermore, transforming
growth factor-β (TGF-β) is required for microglia persistence
in the CNS but not the initial seeding from the YS.13,14

A recent spatial-temporal resolution fate mapping analysis in
zebrafish has shown that microglia in embryonic stage are
derived from the rostral blood island (RBI), the equivalent of
mouse YS, whereas adult microglia originate from the ventral
wall of dorsal aorta (VTA), a region crucial for definitive
hematopoiesis in mouse, suggesting distinct origin for
embryonic and adult microglia in zebrafish.15 By contrast,
accumulating evidence has ruled out the contribution of
monocytes or BM-derived precursors, derived from hema-
topoietic stem cells during the definitive hematopoiesis, to the
residual pool of microglia in the CNS under normal condition
in mouse.16,17 In the adult healthy CNS tissue, microglia are
embedded in the heterogenic population of resident cells
including neurons, astrocytes, and oligodendrocytes and
maintain themselves by self-renewal throughout life with
virtually no contribution from circulating or bone-marrow
cells.2−4,18,19 Following diphtheria toxin-mediated depletion of
microglia that does not affect BBB integrity, the CNS tissue
repopulates microglia, which originate exclusively from an
internal CNS-resident pool in an IL-1receptor-dependent
manner.20 Additionally, it has recently been defined that
microglia can be repopulated from nestin-positive progenitor
cells, potentially the remaining microglia, in the adult brain
under a specific condition, namely, after drug-mediated
elimination using CSF1R inhibitors.21

A recent study has highlighted the importance of the host
microbiota for shaping the phenotype of microglia in the
healthy brain.22 In mice that are not colonized by any
physiological host microbiota, so-called “germ-free” (GF)
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mice, microglia exhibit markedly immature signatures with
functional deficiency different from microglia in conventionally
housed mice.22 Interestingly, microglial phenotype in adult
mice is highly plastic; thereby microglial immaturity can be
induced by drug-mediated transient deletion of gut microbiota;
conversely, microglial abnormalities in GF mice could be
canceled by recolonization of the gut with complex micro-
biota.22 In addition, such microglial defects are recapitulated in
mice lacking a receptor for the short-chain fatty acid (SCFA), a
microbiota-derived bacterial fermentation product, indicating a
pivotal role of gut environment for the formation of microglial
phenotype and CNS homeostasis.22 Microbiota have also been
considered to control brain functions such as mental condition
and stress responses,23,24 and thus a recent article mentions that
the microbiota may bring a new type of therapeutic agent,
“psychobiotics”, against anxiety, depression, and other mood
disorders.25 In light of the fact that the state of microglia has a
great impact on the surrounding environment, microglia might
be a crucial intermediary for microbiota-mediated functional
alterations in the CNS.

■ PHYSIOLOGICAL ROLES OF MICROGLIA
Microglia in the normal physiological brain show a complex
morphology with a compact cell body and highly branched
processes, with which microglia routinely scan the surrounding
territory to sense pathological alterations or disturbances.1,26−28

When focal tissue damage occurs in the CNS, a dense and rapid
extension of microglial processes toward the site of lesion takes

place within several minutes,29 by which microglia prevent the
spread of the lesion as a “protector”. These early responses are
mediated by purinergic receptors, such as P2Y12 receptor,
stimulated by extracellular adenosine triphosphate (ATP) and
adenosine diphosphate (ADP), which are leaked or released
from dying or injured cells.29,30

In addition, as an expert on phagocytosis, it has long been
assumed that their primary role in the CNS tissue is to engulf
and clear foreign substances or apoptotic neurons that die as a
result of programmed cell death,31 through which microglia
destroy infectious agents, remove cell debris, and promote
tissue repair.32 However, beyond such a classical idea, it has
recently been revealed that microglial processes transiently
contact synapses for monitoring neuronal activity and synaptic
function with receptors for multiple types of neurotransmit-
ters26,27,33,34 and eventually prune them via phagocytosis in a
neuronal-activity dependent manner33,34 (Figure 2); thereby

microglia control the number of synaptic connections properly.
These phenomena are thought to play a key role in shaping
proper neural circuits both at early postnatal stages35,36 and in
adult neurogenic niches.37,38 In addition, microglia may actively
engulf viable neurons by phagocytosis, leading to neuronal
death.39 The question then arises as to how microglia recognize
and interact with neuronal components. A recent paper has
shown the involvement of complement factors including
complement receptor 3 (CR3) for microglia-mediated synaptic
remodeling in the postnatal retinogeniculate system.36 In the
CNS, CR3 is expressed only by microglia, and its ligand,
complement component C3, is localized to synaptically
enriched regions.36 Of note, the synaptic elimination by
microglial phagocytosis is lost in mice lacking CR3,36 indicating
that microglia utilize the complement-dependent signaling to
eliminate synapses.
Recently, it was shown that microglia are also responsible for

synaptic plasticity and learning (Figure 2). Mice in which
microglia are specifically depleted with a diphtheria toxin-
mediated system40 showed deficits in motor learning-depend-
ent synapse formation following multiple learning tasks.41

These phenomena are recapitulated when brain-derived
neurotrophic factor (BDNF), a neurotrophin that is known
to regulate synaptic plasticity,42 is deleted from microglia,

Figure 1. Microglial ontogeny and development. Microglia originate
from the erythro-myeloid progenitors (EMPs) in yolk sac. The
differentiation and maturation of microglia are dependent on signals
via colony-stimulating factor 1 receptor (CSF1R; proliferation and
maturation), runt-related transcription factor 1 (Runx1; ramification),
Pu.1 (transition from EMPs to A1 state), and interferon regulatory
factor-8 (IRF8; differentiation from A1 to A2 state). The persistence of
adult microglia requires continuous signals of transforming growth
factor-β (TGF-β), interleukin-34 (IL-34), and bacterially derived
short-chain fatty acids (SCFAs). Figure 2. Interaction between microglia and neurons under

physiological conditions. Microglial processes transiently contact
synapses for monitoring neuronal activity and synaptic function and
in some cases prune them in an activity-dependent manner. Microglia-
derived BDNF contributes to synaptic formation and potentiation.
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indicating that microglia participate in contextual fear
conditioning and motor learning and in motor-learning-
associated spine formation by supplying BDNF.41 In addition,
microglia also play a role in supporting neuronal development
in cortical lamina V via neurotrophic insulin-like growth factor
1 (IGF-1) and fraktalkine (CX3CL1)−CX3CR1 signals.43

Overall, considering the recent findings that demonstrate the
crucial function of microglia by virtue of highly dynamic
processes in synaptic elimination and plasticity, learning, and
neurogenesis, microglia are absolutely essential for the normal
physiological functioning of the adult CNS. Thus, dysregulated
microglia might be responsible for the pathogenesis of various
CNS diseases.

■ MICROGLIA IN THE PATHOGENESIS OF THE CNS
DISEASES

Multiple Sclerosis and Microglia. Multiple sclerosis
(MS) is an autoimmune disease that is characterized by a
progressive axonal damage as a consequence of loss of
oligodendrocytes and demyelination neurodegeneration.44

Experimental autoimmune encephalomyelitis (EAE) is the
most commonly used animal model for MS, which is generated
by peripheral immunization with myelin peptides in an adjuvant
context.45 The characteristic features of this model are massive
infiltration of peripheral immune cells, such as T lymphocytes,
monocytes, and dendritic cells (DCs), into the CNS tissue
associated with prominent blood−brain barrier (BBB)
disruption.44,46 Within such a complex environment, microglia
get quickly activated and interact with several types of cells
including infiltrating cells, damaged neurons, and oligoden-
drocytes, which may produce diversity in microglial function.
Despite recent advances in our knowledge about MS and

EAE, the contributions of microglia to the generation, the
perpetuation, and the resolution of this inflammatory CNS
disease still remain a matter of controversy. For instance, it has
been shown that following immunization the E3 ubiquitin
ligase Peli1, which is abundantly expressed in microglia,
promotes microglial activation concomitantly with the
induction of chemokines and proinflammatory cytokines,
thereby encouraging recruitment of T lymphocytes into the
CNS during the course of EAE induction.47 Mice lacking Peli1
show less severe EAE, whereas the induction of inflammatory T
cells occurs in the peripheral lymphoid organs.47 These data
support the hypothesis of significant microglial involvement in
the induction of EAE. In contrast, using CCR2−
RFP:CX3CR1−GFP double-reporter mice in which CCR2+

monocytes and CX3CR1+ microglia express RFP or GFP,
respectively, it has shown that resident microglia exhibit a
distinct gene expression profile from that of monocyte-derived
macrophages,48 with which the authors conclude that microglia
display a rather inert signature for the development of EAE
symptoms.
To discriminate the functions of microglia from those of

other monocytic cells (e.g., macrophages and monocytes) in
the body is still challenging because they share a series of
marker proteins.49 However, recently, a novel Cre−LoxP-based
methodology that specifically targets microglia without affecting
monocyte-derived macrophages was developed using a mouse
line in which a tamoxifen (TAM)-inducible Cre-recombinase is
expressed under the control of the Cx3cr1 promoter (Cx3cr1-
CreERT2 mice).8,50 When activated by TAM, Cre-mediated
recombination occurs only for a limited period in cells
expressing CX3CR1, and at a later time point, only long-lived

microglia still carry Cre-mediated mutations, whereas other
short-lived cells will be replaced by nonmutated progenitors. By
taking advantage of this system, Goldmann et al. reported that
microglia-specific deletion of TGF-β-activated kinase 1
(TAK1), a signal regulator required for the activation of
various kinases, causes significantly decreased production of the
proinflammatory mediators and confers mice resistant to
EAE.50 Consistently, those mice that had received immuniza-
tion showed a significant reduction in both infiltration of
immune cells and demyelination.50 Thus, these findings
highlight the detrimental role of microglia in EAE.
A cuprizone model that also captures several aspects of MS

pathology is generated by administering a copper chelating
toxin cuprizone, which causes cell death of oligodendrocytes by
disrupting metabolic processes.51 In contrast to the EAE model,
the BBB in this model remains intact with no recruitment of
peripheral immune cells to the CNS.17,52 Interestingly, deletion
of the voltage-gated proton channel Hv1, which is specifically
expressed in microglia and participates in NADPH oxidase-
dependent reactive oxygen species (ROS) production in the
CNS,53 partially prevents demyelination following cuprizone
exposure,54 indicating that microglia may play a role for the
disease progression.

Microglia and Neuropathic Pain. Neuropathic pain is
one of the most debilitating pain conditions, which develops
concomitantly with neuronal injury and degeneration caused by
invasive cancer, infection, autoimmune disease, or traumatic
injury.55 A hallmark symptom of neuropathic pain is tactile
allodynia, characterized by pain hypersensitivity to innocuous
stimuli, which is can be assessed using animal models subjected
to peripheral nerve injury (PNI). When injuries occur in
peripheral nerves, microglia undertake a series of changes in
morphology and gene expression in spinal dorsal horn
(SDH),56 where the terminus of the injured nerve exists.
During this process, SDH microglia undergo proliferation,57

thereby markedly increasing their number.57−59 In addition, it
was shown that BM-derived cells injected intravenously
infiltrate into the SDH parenchyma ipsilateral to the injury
and colonize as microglia-like CNS macrophages.60 However, it
remains controversial whether these BM cells infiltrate into the
parenchyma of the spinal cord after PNI because these
experiments are accomplished under specific conditions such
as whole-body irradiation,60 which is known to damage the
BBB and could produce artificial effects.19 Activated spinal
microglia exhibit dramatic changes in the expression of various
genes including purinergic P2X4 receptor (P2X4R).58,61,62

Following PNI, mice in which this gene is deleted do not
express pain behaviors, whereas the characteristic microgliosis is
not affected.62,63 Therefore, such an increase in number of
microglia the SDH is a direct consequence of peripheral nerve
damage but is not per se sufficient to cause pain hyper-
sensitivity.64

What mechanism controls a reactive state of microglia?
Recently, IRF8 was shown to be increased in spinal microglia
after PNI.65 Forced IRF8 expression in cultured microglia
promotes the transcription of genes associated with reactive
states, which mimics the gene profile of spinal microglia after
PNI.65 Furthermore, microglia lacking IRF8 failed to increase
the expression of a variety of genes, suggesting that IRF8 is a
crucial player for reactive microglia.65 In addition, with stimuli
of fibronectin upregulated in the spinal cord of the PNI-
animals,66 IRF5 further activates P2X4R expression through
direct binding to its promoter in microglia.67 Stimulating these
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receptors with extracellular ATP, which is supplied through an
as-yet-unknown mechanism in the spinal cord, results in the
release of bioactive factors including BDNF,62,68 which causes
neurotransmission alterations such as the inhibition of the
inhibitory system or the enhancement of excitatory synaptic
transmission in the dorsal horn neurons of the spinal cord.61,68

These pathological alterations convert innocuous inputs to a
nociceptive signal output to the brain, thereby contributing to
the abnormal sensory perception related to pain hyper-
sensitivity (Figure 3). However, such a microglia-mediated

pathological system for neuropathic pain may be functioning
only in males. A recent paper published by Sorge et al. provided
a novel concept for the generation of neuropathic pain in which
microglia are not required for neuropathic pain in females.69

Rather adaptive immune cells including T lymphocytes were
shown to fulfill a similar role to microglia for the production of
pain hypersensitivity.69 In fact, although spinal microgliosis is
indistinguishable between the two genders, inhibiting microglial
P2X4R or BDNF is insufficient to reverse pain hypersensitivity
in female mice.69 Furthermore, minocycline, an inhibitor of
microglial activation, has no effect on pain behavior,69

indicating that a gender difference occurs in the spinal cord.
Such a strong pain symptom frequently appears concom-

itantly with the disease progression of MS. In addition, robust
microglial activation accompanied with P2X4R upregulation
was evident in the SDH of EAE animal models.70,71 Although
the underlying mechanism of this pain associated with MS
remains poorly understood, it is most likely that activated
microglia may also contribute to this pain pathology.

A Specific Microglia Phenotype Expressing Hoxb8 Is
Related to a Compulsive Disorder. Recent genome-wide
expression profiling technology has provided detailed tran-
scriptome data for microglia,13,72−74 in which microglia are
compared with other cells in the CNS or other monocytic cells,
and these data have suggested that there may be several types of
microglia with distinct transcriptomes in the CNS. Chen et al.
showed a unique subpopulation of microglia that express the
transcription factor Hoxb8.75 These Hoxb8+ microglia
represent ∼30% of all microglial cells in the adult brain. Mice
lacking Hoxb8 function or with the specific deletion of Hoxb8
in Tie2+ myeloid cells show a specific behavior manifested by
excessive grooming and hair removal,75 which is very similar to
that described for humans with the obsessive-compulsive
disorder trichotillomania.76 Interestingly, such behavioral
phenotypes are reversed by transplanting BM cells taken
from mice expressing Hoxb8 following irradiation, which allows
Hoxb8+ myeloid cells to replace Hoxb8-deficient microglia in
the CNS tissue. However, it remains to be investigated how the
irradiation changed microglia phenotypes in chimeric animals.
Thus, defects in the normal function of Hoxb8 in microglia may
play a role in this disorder.

■ CONCLUDING REMARKS

The recent substantial evidence demonstrates that microglia are
a highly unique and plastic cell population in the CNS that
serve multiple roles not only in development and homeostasis
of the CNS but in also deterioration of or recovery from
pathological conditions though inflammatory as well as
noninflammatory responses. Thus, defining specific microglial
molecules or subpopulations within anatomically distinct CNS
regions associated with specific vital phenomena will be
necessary for deepening our understanding about the nature
of the CNS, which may provide further exciting insights into
the functions of microglia and clues to develop novel
therapeutics for the management of CNS diseases in the future.
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Figure 3. Reactive microglia are crucial for the pathogenesis of
neuropathic pain. Following nerve injury, microglia transform into a
P2X4R-expressing reactive phenotype in an IRF8- and IRF5-
dependent manner and release bioactive factors including BDNF,
which elicits abnormal excitability of spinal dorsal horn (SDH)
neurons, resulting in the production of neuropathic pain.
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